Algebra: Factoring of Polynomials
For convenience and quick browsing, the problems are grouped into polynomials that are:
- product of a monomial and a polynomial
- grouped into terms containing a common factor
- difference of two squares
- difference of two cubes
- sum of two cubes
- product of two binomials
The last group of polynomials given above consists of polynomials that are:
- product of two binomials having a common factor
- product of any two binomials
- square of a binomial sum
- square of a binomial difference
Some of these grouped polynomials contain factors which are a combination of a monomial, a binomial, and a trinomial. Polynomials that are:
- difference of two squares can be the products of two binomials, or products of two trinomials, or products of a monomial and two binomials.
- sum of two cubes can be products of a binomial and a trinomial, or products of a monomial, a binomial, and a trinomial
Polynomials With Monomial As One of Its Factors
1. | 15x4 + 15x3y |
| Answer: (3x3)(5x + 5y) |
| |
2. | 4x3 - 4x2y4 |
| Answer: (4x2)(x - y4) |
| |
3. | 5x5 - 5x3y2 |
| Answer: (x3)(5x2 - 5y2) |
| |
4. | 63s6t3 - 42s3t3u + 126s3t3 |
| Answer: (21s3t3)(3s3 - 2u + 6) |
| |
5. | 14x5 + 6x2y |
| Answer: (2x2)(7x3 + 3y) |
| |
6. | 18x6y3 - 15x2y3z2 + 3x2y3 |
| Answer: (3x2y3)(6x4 - 5z2 + 1) |
| |
7. | 14a4b4 + 56a3b4 |
| Answer: (14a3b4)(a + 4) |
| |
8. | 7x5 + xy2 |
| Answer: (x)(7x4 + y2) |
| |
9. | 7x4 + 21x3y3 |
| Answer: (7x3)(x + 3y3) |
| |
10. | 24x6y4 - 192x3y4 |
| Answer: (24x3y4)(x3 - 8) |
| |
11. | 35x3 - 49xy2 |
| Answer: (7x)(5x2 - 7y2) |
| |
12. | 48a4b2 + 12a3b2 |
| Answer: (12a3b2)(4a + 1) |
| |
13. | 56x4 - 40xy4 |
| Answer: (8x)(7x3 - 5y4) |
| |
14. | 20a3b2 + 60ab2 |
| Answer: (20ab2)(a2 + 3) |
| |
15. | 120s5t3 - 75s2t3u2 + 30s2t3 |
| Answer: (15s2t3)(8s3 - 5u2 + 2) |
| |
16. | 24x4y - 6x3y |
| Answer: (6x3y)(4x - 1) |
| |
17. | 105x5y - 35x3y |
| Answer: (35x3y)(3x2 - 1) |
| |
18. | 30x5 - 15x2y3 |
| Answer: (5x2)(6x3 - 3y3) |
| |
19. | 6x4 + 8x3y4 |
| Answer: (x3)(6x + 8y4) |
| |
20. | 20x4y3 - 40xy3 |
| Answer: (20xy3)(x3 - 2) |
| |
Polynomials That Can Be Grouped Into Terms Having A Common Factor
1. | su4 + sv + tu4 + tv |
| Answer: (s + t)(u4 + v) |
| |
2. | wy + 3wz + xy + 3xz |
| Answer: (w + x)(y + 3z) |
| |
3. | 24su - 42sv + 20tu - 35tv |
| Answer: (6s + 5t)(4u - 7v) |
| |
4. | 20w2y4 + 35w2z4 + 8xy4 + 14xz4 |
| Answer: (5w2 + 2x)(4y4 + 7z4) |
| |
5. | 64w4y3 - 40w4z2 + 8xy3 - 5xz2 |
| Answer: (8w4 + x)(8y3 - 5z2) |
| |
6. | 3ab + 3a + b2 + b |
| Answer: (3a + b)(b + 1) |
| |
7. | 5xy - 20x + 2y2 - 8y |
| Answer: (5x + 2y)(y - 4) |
| |
8. | 28s3t - 35s3 + 24t2 - 30t |
| Answer: (7s3 + 6t)(4t - 5) |
| |
9. | 7su + sv - 7tu - tv |
| Answer: (s - t)(7u + v) |
| |
10. | su3 + sv4 + tu3 + tv4 |
| Answer: (s + t)(u3 + v4) |
| |
11. | 8wy + 32wz + 3xy + 12xz |
| Answer: (8w + 3x)(y + 4z) |
| |
12. | 6su - 16sv + 3tu - 8tv |
| Answer: (2s + t)(3u - 8v) |
| |
13. | 12w2y + 15w2z2 + 8x3y + 10x3z2 |
| Answer: (3w2 + 2x3)(4y + 5z2) |
| |
14. | 3w3y4 - 8w3z3 + 15x4y4 - 40x4z3 |
| Answer: (w3 + 5x4)(3y4 - 8z3) |
| |
15. | 4ab + 2a + 10b2 + 5b |
| Answer: (2a + 5b)(2b + 1) |
| |
16. | 28xy - 4x + 7y2 - y |
| Answer: (4x + y)(7y - 1) |
| |
17. | 24st2 - 15s + 64t4 - 40t2 |
| Answer: (3s + 8t2)(8t2 - 5) |
| |
18. | 5su + 2sv - 5tu - 2tv |
| Answer: (s - t)(5u + 2v) |
| |
19. | 12ab + 42a + 14b2 + 49b |
| Answer: (6a + 7b)(2b + 7) |
| |
20. | 6xy - 10x + 9y2 - 15y |
| Answer: (2x + 3y)(3y - 5) |
| |
Polynomials That Are The Difference of Two Squares
You will find that some of the problems given below can be factored twice, that is, after factoring an expression one of the resulting factors is still factorable.
Also, in some problems a group of terms is treated as a single term.
1. | x2 - 25 |
| Answer: (x - 5)(x + 5) |
| |
2. | 36x2 - 25 |
| Answer: (6x - 5)(6x + 5) |
| |
3. | 25x2 - 49 |
| Answer: (5x - 7)(5x + 7) |
| |
4. | x2 - 9 |
| Answer: (x - 3)(x + 3) |
| |
5. | 16x2 - 25 |
| Answer: (4x - 5)(4x + 5) |
| |
6. | x2 - (y - z)2 |
| Answer: [ x + (y - z) ] [ (x - (y - z) ] |
| |
7. | (x + 8)2 - 9 |
| Answer: [ (x + 8) + 3 ] [ (x + 8) - 3 ] |
| |
8. | (x + 3)2 - 1 |
| Answer: [ (x + 3) + 1 ] [ (x + 3) - 1 ] |
| |
9. | 49x2 - 9(y - z)2 |
| Answer: [ 7x + 3(y - z) ] [ (7x - 3(y - z) ] |
| |
10. | (x + 5)2 - 9 |
| Answer: [ (x + 5) + 3 ] [ (x + 5) - 3 ] |
| |
11. | (x + 1)2 - 36 |
| Answer: [ (x + 1) + 6 ] [ (x + 1) - 6 ] |
| |
12. | (x + 8)2 - 25 |
| Answer: [ (x + 8) + 5 ] [ (x + 8) - 5 ] |
| |
13. | 16x2 - 49(y - z)2 |
| Answer: [ 4x + 7(y - z) ] [ (4x - 7(y - z) ] |
| |
14. | 49x4y2 - 49x4z2 |
| Answer: 49x4 (y + z) (y - z) |
| |
15. | 49x2y2 - 441x2z2 |
| Answer: 49x2 (y + 3z) (y - 3z) |
| |
16. | 9x2y2 - 36x2z2 |
| Answer: 9x2 (y + 2z) (y - 2z) |
| |
17. | 16x2y2 - 144x2z2 |
| Answer: 16x2 (y + 3z) (y - 3z) |
| |
18. | 4x2y2 - 100x2z2 |
| Answer: 4x2 (y + 5z) (y - 5z) |
| |
19. | x4 - 256y4 |
| Answer: (x + 4y) (x - 4y) (x2 + 16y2) |
| |
20. | x4 - 81y4 |
| Answer: (x + 3y) (x - 3y) (x2 + 9y2) |
| |
Polynomials That Are The Difference of Two Cubes
1. | 27x3y6 - 125z3 |
| Answer: (3xy2 - 5z) (9x2y4 + 15xy2z + 25z2) |
| |
2. | 343y6 - 512 |
| Answer: (7y2 - 8) (49y4 + 56y2 + 64) |
| |
3. | 8a6 - 125b3 |
| Answer: (2a2 - 5b) (4a4 + 10a2b + 25b2) |
| |
4. | x3 - 8 |
| Answer: (x - 2) (x2 + 2x + 4) |
| |
5. | 8a3 - 512b3 |
| Answer: (2a - 8b) (4a2 + 16ab + 64b2) |
| |
6. | 343x3y6 - 64z3 |
| Answer: (7xy2 - 4z) (49x2y4 + 28xy2z + 16z2) |
| |
7. | 512y3 - 125 |
| Answer: (8y - 5) (64y2 + 40y + 25) |
| |
8. | 27a6 - 125b3 |
| Answer: (3a2 - 5b) (9a4 + 15a2b + 25b2) |
| |
9. | 8a3 - 125b3 |
| Answer: (2a - 5b) (4a2 + 10ab + 25b2) |
| |
10. | 125y6 - 216 |
| Answer: (5y2 - 6) (25y4 + 30y2 + 36) |
| |
11. | 343y3 - 216 |
| Answer: (7y - 6) (49y2 + 42y + 36) |
| |
12. | x6 - 8 |
| Answer: (x2 - 2) (x4 + 2x2 + 4) |
| |
13. | 8y3 - 125 |
| Answer: (2y - 5) (4y2 + 10y + 25) |
| |
14. | 8y3 - 216 |
| Answer: (2y - 6) (4y2 + 12y + 36) |
| |
15. | 343y6 - 27 |
| Answer: (7y2 - 3) (49y4 + 21y2 + 9) |
| |
16. | x6 - 64 |
| Answer: (x2 - 4) (x4 + 4x2 + 16) |
| |
17. | x6 - 27 |
| Answer: (x2 - 3) (x4 + 3x2 + 9) |
| |
18. | x3 - 27 |
| Answer: (x - 3) (x2 + 3x + 9) |
| |
19. | 8y6 - 343 |
| Answer: (2y2 - 7) (4y4 + 14y2 + 49) |
| |
20. | 27y6 - 27 |
| Answer: (3y2 - 3) (9y4 + 9y2 + 9) |
| |
21. | 512a3 - 8b3 |
| Answer: (8a - 2b) (64a2 + 16ab + 4b2) |
| |
22. | 64a6 - 343b3 |
| Answer: (4a2 - 7b) (16a4 + 28a2b + 49b2) |
| |
23. | 8a3 - 8b3 |
| Answer: (2a - 2b) (4a2 + 4ab + 4b2) |
| |
24. | x3 - 125 |
| Answer: (x - 5) (x2 + 5x + 25) |
| |
25. | 512a6 - 8b3 |
| Answer: (8a2 - 2b) (64a4 + 16a2b + 4b2) |
| |
Polynomials That Are The Sum of Two Cubes
1. | 512x6 + 27y6 |
| Answer: (8x2 + 3y2) (64x4 - 24x2y2 + 9y4) |
| |
2. | 8x6 + 27y6 |
| Answer: (2x2 + 3y2) (4x4 - 6x2y2 + 9y4) |
| |
3. | 8a6 + 125b6 |
| Answer: (2a2 + 5b2) (4a4 - 10a2b2 + 25b4) |
| |
4. | 512x3 + 8y3 |
| Answer: (8x + 2y) (64x2 - 16xy + 4y2) |
| |
5. | 8x6 + 64y6 |
| Answer: (2x2 + 4y2) (4x4 - 8x2y2 + 16y4) |
| |
6. | 8m3 + 343n3 |
| Answer: (2m + 7n) (4m2 - 14mn + 49n2) |
| |
7. | 64s3x + 8t3x |
| Answer: x (4s + 2t)(16s2 - 8st + 4t2) |
| |
8. | 8x3 + 216y3 |
| Answer: (2x + 6y) (4x2 - 12xy + 36y2) |
| |
9. | 125x6y + 343y |
| Answer: y (5x2 + 7)(25x4 - 35x2 + 49) |
| |
10. | 125x3 + 8y3 |
| Answer: (5x + 2y) (25x2 - 10xy + 4y2) |
| |
11. | 512x6 + 343y6 |
| Answer: (8x2 + 7y2) (64x4 - 56x2y2 + 49y4) |
| |
12. | 8x3 + 125y3 |
| Answer: (2x + 5y) (4x2 - 10xy + 25y2) |
| |
13. | 125a6x + 64b6x |
| Answer: x (5a2 + 4b2)(25a4 - 20a2b2 + 16b4) |
| |
14. | 64m3y + 27n3y |
| Answer: y (4m + 3n)(16m2 - 12mn + 9n2) |
| |
15. | 64s3x + 125t3x |
| Answer: x (4s + 5t)(16s2 - 20st + 25t2) |
| |
16. | 216x3z + 343y3z |
| Answer: z (6x + 7y)(36x2 - 42xy + 49y2) |
| |
17. | 8s6x + 125t6x |
| Answer: x (2s2 + 5t2)(4s4 - 10s2t2 + 25t4) |
| |
18. | 343a3c + 64b3c |
| Answer: c (7a + 4b)(49a2 - 28ab + 16b2) |
| |
19. | 512s6x + 343t6x |
| Answer: x (8s2 + 7t2)(64s4 - 56s2t2 + 49t4) |
| |
20. | 8s6u + 27t6u |
| Answer: u (2s2 + 3t2)(4s4 - 6s2t2 + 9t4) |
| |
The following problems are about polynomials which are the products of two binomials.
Polynomials That Are The Products of Two Binomials Having a Common Factor
1. | x2 + 11x + 30 |
| Answer: (x + 5)(x + 6) |
| |
2. | x2 - 11x + 24 |
| Answer: (x - 3)(x - 8) |
| |
3. | x2 + 8x + 15 |
| Answer: (x + 3)(x + 5) |
| |
4. | 49x2 - 35x + 4 |
| Answer: (7x - 1)(7x - 4) |
| |
5. | x2 - 9x + 14 |
| Answer: (x - 2)(x - 7) |
| |
6. | x2 + 5x + 4 |
| Answer: (x + 1)(x + 4) |
| |
7. | x2 - x - 30 |
| Answer: (x - 6)(x + 5) |
| |
8. | x2 + 7x + 10 |
| Answer: (x + 5)(x + 2) |
| |
9. | 25x2 + 65x + 42 |
| Answer: (5x + 6)(5x + 7) |
| |
10. | x2 + x - 56 |
| Answer: (x - 7)(x + 8) |
| |
11. | x2 - 9x + 8 |
| Answer: (x - 1)(x - 8) |
| |
12. | x2 + 2x - 15 |
| Answer: (x - 3)(x + 5) |
| |
13. | x2 + 13x + 42 |
| Answer: (x + 6)(x + 7) |
| |
14. | x2 + 11x + 24 |
| Answer: (x + 8)(x + 3) |
| |
15. | x2 - 11x + 30 |
| Answer: (x - 5)(x - 6) |
| |
16. | x2 - 13x + 40 |
| Answer: (x - 5)(x - 8) |
| |
17. | x2 + x - 30 |
| Answer: (x - 5)(x + 6) |
| |
18. | x2 + 3x + 2 |
| Answer: (x + 2)(x + 1) |
| |
19. | x2 - 2x - 3 |
| Answer: (x - 3)(x + 1) |
| |
20. | x2 - 8x + 15 |
| Answer: (x - 5)(x - 3) |
| |
Polynomials That Are The Products of Any Two Binomials
1. | 24x2 + 35x - 49 |
| Answer: (8x - 7)(3x + 7) |
| |
2. | 2x2 + 7x - 4 |
| Answer: (2x - 1)(x + 4) |
| |
3. | 24x2 + 34x + 7 |
| Answer: (6x + 7)(4x + 1) |
| |
4. | 32x2 + 28x + 3 |
| Answer: (8x + 1)(4x + 3) |
| |
5. | 33x2 + 14x + 1 |
| Answer: (3x + 1)(11x + 1) |
| |
6. | 12x2 + 11x - 5 |
| Answer: (3x - 1)(4x + 5) |
| |
7. | 5x2 + 33x - 56 |
| Answer: (5x - 7)(x + 8) |
| |
8. | 8x2 - 9x + 1 |
| Answer: (x - 1)(8x - 1) |
| |
9. | 3x2 + 19x + 6 |
| Answer: (x + 6)(3x + 1) |
| |
10. | 6x2 - 25x + 14 |
| Answer: (3x - 2)(2x - 7) |
| |
11. | 35x2 + 17x - 30 |
| Answer: (7x - 5)(5x + 6) |
| |
12. | 7x2 + 38x + 15 |
| Answer: (7x + 3)(x + 5) |
| |
13. | 3x2 + 32x + 64 |
| Answer: (x + 8)(3x + 8) |
| |
14. | 3x2 - 13x + 12 |
| Answer: (x - 3)(3x - 4) |
| |
15. | 10x2 + 21x + 9 |
| Answer: (2x + 3)(5x + 3) |
| |
16. | 6x2 - 23x + 20 |
| Answer: (3x - 4)(2x - 5) |
| |
17. | 10x2 - 47x + 42 |
| Answer: (2x - 7)(5x - 6) |
| |
18. | 6x2 - 43x + 42 |
| Answer: (6x - 7)(x - 6) |
| |
19. | 15x2 + 4x - 32 |
| Answer: (3x - 4)(5x + 8) |
| |
20. | 3x2 - 14x - 5 |
| Answer: (x - 5)(3x + 1) |
| |
Polynomials That Are The Square of a Binomial Sum
1. | 169x2 + 364x + 196 |
| Answer: (13x + 14)(13x + 14) |
| |
2. | 64x2 + 80x + 25 |
| Answer: (8x + 5)(8x + 5) |
| |
3. | 25x2 + 40x + 16 |
| Answer: (5x + 4)(5x + 4) |
| |
4. | x2 + 10x + 25 |
| Answer: (x + 5)(x + 5) |
| |
5. | 64x2 + 48x + 9 |
| Answer: (8x + 3)(8x + 3) |
| |
6. | 25x2 + 60x + 36 |
| Answer: (5x + 6)(5x + 6) |
| |
7. | 16x2 + 8x + 1 |
| Answer: (4x + 1)(4x + 1) |
| |
8. | x2 + 22x + 121 |
| Answer: (x + 11)(x + 11) |
| |
9. | 169x2 + 78x + 9 |
| Answer: (13x + 3)(13x + 3) |
| |
10. | x2 + 4x + 4 |
| Answer: (x + 2)(x + 2) |
| |
11. | 49x2 + 56x + 16 |
| Answer: (7x + 4)(7x + 4) |
| |
12. | x2 + 2x + 1 |
| Answer: (x + 1)(x + 1) |
| |
13. | x2 + 14x + 49 |
| Answer: (x + 7)(x + 7) |
| |
14. | 169x2 + 156x + 36 |
| Answer: (13x + 6)(13x + 6) |
| |
15. | x2 + 16x + 64 |
| Answer: (x + 8)(x + 8) |
| |
16. | x2 + 26x + 169 |
| Answer: (x + 13)(x + 13) |
| |
17. | 64x2 + 16x + 1 |
| Answer: (8x + 1)(8x + 1) |
| |
18. | x2 + 8x + 16 |
| Answer: (x + 4)(x + 4) |
| |
19. | 25x2 + 110x + 121 |
| Answer: (5x + 11)(5x + 11) |
| |
20. | 49x2 + 42x + 9 |
| Answer: (7x + 3)(7x + 3) |
| |
Polynomials That Are The Square of a Binomial Difference
1. | 9x2 - 30x + 25 |
| Answer: (3x - 5)(3x - 5) |
| |
2. | 169x2 - 364x + 196 |
| Answer: (13x - 14)(13x - 14) |
| |
3. | 25x2 - 40x + 16 |
| Answer: (5x - 4)(5x - 4) |
| |
4. | 49x2 - 42x + 9 |
| Answer: (7x - 3)(7x - 3) |
| |
5. | 9x2 - 60x + 100 |
| Answer: (3x - 10)(3x - 10) |
| |
6. | 64x2 - 80x + 25 |
| Answer: (8x - 5)(8x - 5) |
| |
7. | 36x2 - 84x + 49 |
| Answer: (6x - 7)(6x - 7) |
| |
8. | x2 - 26x + 169 |
| Answer: (x - 13)(x - 13) |
| |
9. | 9x2 - 12x + 4 |
| Answer: (3x - 2)(3x - 2) |
| |
10. | x2 - 2x + 1 |
| Answer: (x - 1)(x - 1) |
| |
11. | x2 - 14x + 49 |
| Answer: (x - 7)(x - 7) |
| |
12. | x2 - 4x + 4 |
| Answer: (x - 2)(x - 2) |
| |
13. | 4x2 - 20x + 25 |
| Answer: (2x - 5)(2x - 5) |
| |
14. | x2 - 8x + 16 |
| Answer: (x - 4)(x - 4) |
| |
15. | 25x2 - 80x + 64 |
| Answer: (5x - 8)(5x - 8) |
| |
16. | x2 - 16x + 64 |
| Answer: (x - 8)(x - 8) |
| |
17. | x2 - 6x + 9 |
| Answer: (x - 3)(x - 3) |
| |
18. | 64x2 - 16x + 1 |
| Answer: (8x - 1)(8x - 1) |
| |
19. | x2 - 10x + 25 |
| Answer: (x - 5)(x - 5) |
| |
20. | 49x2 - 70x + 25 |
| Answer: (7x - 5)(7x - 5) |
| |