April 7, 2008

Analytic Geometry: Equation of a Line

Given two points, the equation of a line whose points are equidistant from the two given points is determined.

ProblemGiven PointsEquation of the Line
1P1(6,9) P2(3,-8)3x+17y-22=0
2P1(1,-2) P2(-3,-1)8x-2y+5=0
3P1(5,9) P2(-5,-7)5x+8y-8=0
4P1(-3,3) P2(-9,-3)1x+1y+6=0
5P1(6,2) P2(-7,9)13x-7y+45=0
6P1(-6,7) P2(8,-7)1x-1y-1=0
7P1(5,5) P2(6,-5)2x-20y-11=0
8P1(1,9) P2(-3,-5)2x+7y-12=0
9P1(5,-8) P2(-3,-8)1x-0y-1=0
10P1(-2,1) P2(9,-4)11x-5y-46=0
11P1(-6,3) P2(-4,-8)4x-22y-35=0
12P1(8,4) P2(-9,4)34x-0y+17=0
13P1(1,3) P2(4,-1)6x-8y-7=0
14P1(-5,2) P2(7,-3)24x-10y-29=0
15P1(5,1) P2(-8,-8)13x+9y+51=0
16P1(3,-7) P2(-1,-1)2x-3y-14=0
17P1(-3,7) P2(-1,-8)4x-30y-7=0
18P1(4,7) P2(-5,5)18x+4y-15=0
19P1(3,1) P2(-7,-9)1x+1y+6=0
20P1(7,8) P2(-4,9)11x-1y-8=0
21P1(-6,9) P2(-3,-7)6x-32y+59=0
22P1(-7,8) P2(5,-5)24x-26y+63=0
23P1(4,8) P2(1,-2)6x+20y-75=0
24P1(5,-7) P2(-5,-5)5x-1y-6=0
25P1(-8,5) P2(-1,-5)14x-20y+63=0
26P1(6,7) P2(-3,6)9x+1y-20=0
27P1(-5,8) P2(3,-7)16x-30y+31=0
28P1(8,2) P2(-7,-8)6x+4y+9=0
29P1(6,-9) P2(-5,-6)11x-3y-28=0
30P1(3,5) P2(7,-3)1x-2y-3=0