Analytic Geometry: Equation of a Line
Given two points, the equation of a line whose points are equidistant from the two given points is determined.
Problem | Given Points | Equation of the Line |
1 | P1(6,9) P2(3,-8) | 3x+17y-22=0 |
2 | P1(1,-2) P2(-3,-1) | 8x-2y+5=0 |
3 | P1(5,9) P2(-5,-7) | 5x+8y-8=0 |
4 | P1(-3,3) P2(-9,-3) | 1x+1y+6=0 |
5 | P1(6,2) P2(-7,9) | 13x-7y+45=0 |
6 | P1(-6,7) P2(8,-7) | 1x-1y-1=0 |
7 | P1(5,5) P2(6,-5) | 2x-20y-11=0 |
8 | P1(1,9) P2(-3,-5) | 2x+7y-12=0 |
9 | P1(5,-8) P2(-3,-8) | 1x-0y-1=0 |
10 | P1(-2,1) P2(9,-4) | 11x-5y-46=0 |
11 | P1(-6,3) P2(-4,-8) | 4x-22y-35=0 |
12 | P1(8,4) P2(-9,4) | 34x-0y+17=0 |
13 | P1(1,3) P2(4,-1) | 6x-8y-7=0 |
14 | P1(-5,2) P2(7,-3) | 24x-10y-29=0 |
15 | P1(5,1) P2(-8,-8) | 13x+9y+51=0 |
16 | P1(3,-7) P2(-1,-1) | 2x-3y-14=0 |
17 | P1(-3,7) P2(-1,-8) | 4x-30y-7=0 |
18 | P1(4,7) P2(-5,5) | 18x+4y-15=0 |
19 | P1(3,1) P2(-7,-9) | 1x+1y+6=0 |
20 | P1(7,8) P2(-4,9) | 11x-1y-8=0 |
21 | P1(-6,9) P2(-3,-7) | 6x-32y+59=0 |
22 | P1(-7,8) P2(5,-5) | 24x-26y+63=0 |
23 | P1(4,8) P2(1,-2) | 6x+20y-75=0 |
24 | P1(5,-7) P2(-5,-5) | 5x-1y-6=0 |
25 | P1(-8,5) P2(-1,-5) | 14x-20y+63=0 |
26 | P1(6,7) P2(-3,6) | 9x+1y-20=0 |
27 | P1(-5,8) P2(3,-7) | 16x-30y+31=0 |
28 | P1(8,2) P2(-7,-8) | 6x+4y+9=0 |
29 | P1(6,-9) P2(-5,-6) | 11x-3y-28=0 |
30 | P1(3,5) P2(7,-3) | 1x-2y-3=0 |