December 22, 2007

Analytic Geometry: Equation of a Line

Given two points, the equation of a line whose points are equidistant from the two given points is determined.
ProblemGiven PointsEquation of the Line
1P1(-3,5) P2(-2,-5)2x-20y+5=0
2P1(9,7) P2(1,-1)1x+1y-8=0
3P1(3,7) P2(-9,-4)24x+22y+39=0
4P1(4,8) P2(-1,5)5x+3y-27=0
5P1(9,-6) P2(-4,-9)13x+3y-10=0
6P1(-8,7) P2(7,-5)10x-8y+13=0
7P1(3,4) P2(-6,-8)6x+8y+25=0
8P1(4,-3) P2(-8,-4)24x+2y+55=0
9P1(1,8) P2(3,-9)4x-34y-25=0
10P1(-1,3) P2(8,-7)18x-20y-103=0
11P1(-3,4) P2(-8,-4)10x+16y+55=0
12P1(9,1) P2(-9,6)36x-10y+35=0
13P1(-5,9) P2(-8,-3)2x+8y-11=0
14P1(-2,2) P2(3,-1)5x-3y-1=0
15P1(2,1) P2(2,-4)0x-2y-3=0
16P1(8,7) P2(-3,-9)22x+32y-23=0
17P1(5,-3) P2(-8,-8)13x+5y+47=0
18P1(7,1) P2(-5,5)3x-1y-0=0
19P1(-9,1) P2(3,-5)2x-1y+4=0
20P1(1,3) P2(8,-1)14x-8y-55=0
21P1(3,-5) P2(-4,-9)14x+8y+63=0
22P1(-3,6) P2(-6,-6)2x+8y+9=0
23P1(5,7) P2(-5,-7)5x+7y-0=0
24P1(4,9) P2(-9,1)26x+16y-15=0
25P1(4,1) P2(-5,-4)9x+5y+12=0
26P1(5,6) P2(-3,9)16x-6y+29=0
27P1(-8,4) P2(-4,-7)8x-22y+15=0
28P1(-1,3) P2(4,-2)1x-1y-1=0
29P1(3,5) P2(6,-1)2x-4y-1=0
30P1(6,-2) P2(-7,-3)13x+1y+9=0