November 28, 2007

Analytic Geometry: Equation of a Line

Given two points, the equation of a line whose points are equidistant from the two given points is determined.

ProblemGiven PointsEquation of the Line
1P1(-5,2) P2(6,-1)11x-3y-4=0
2P1(-1,7) P2(-9,-4)16x+22y+47=0
3P1(6,9) P2(8,-2)4x-22y+49=0
4P1(1,-3) P2(-4,-6)5x+3y+21=0
5P1(6,3) P2(-4,2)20x+2y-25=0
6P1(5,9) P2(-2,-1)14x+20y-101=0
7P1(5,1) P2(5,-2)0x-2y-1=0
8P1(-2,5) P2(3,-5)2x-4y-1=0
9P1(4,4) P2(-5,5)9x-1y+9=0
10P1(9,-3) P2(-3,-4)24x+2y-65=0
11P1(1,8) P2(-9,-2)1x+1y+1=0
12P1(-5,7) P2(-1,-1)1x-2y+9=0
13P1(-4,1) P2(7,-7)22x-16y-81=0
14P1(7,6) P2(-5,1)24x+10y-59=0
15P1(1,-1) P2(-3,-4)8x+6y+23=0
16P1(6,7) P2(-2,-2)16x+18y-77=0
17P1(9,7) P2(1,-8)16x+30y-65=0
18P1(-1,7) P2(-7,-4)12x+22y+15=0
19P1(-3,3) P2(-2,-5)2x-16y-11=0
20P1(6,9) P2(3,-6)1x+5y-12=0
21P1(9,-9) P2(-1,-3)5x-3y-38=0
22P1(1,7) P2(-7,-7)4x+7y+12=0
23P1(5,8) P2(-2,4)14x+8y-69=0
24P1(-9,4) P2(3,-4)3x-2y+9=0
25P1(4,9) P2(5,-1)2x-20y+71=0
26P1(5,-2) P2(-9,-7)28x+10y+101=0
27P1(9,9) P2(-3,-5)6x+7y-32=0
28P1(3,3) P2(-5,6)16x-6y+43=0
29P1(-1,1) P2(-2,-7)2x+16y+51=0
30P1(-5,8) P2(2,-5)7x-13y+30=0