October 15, 2007

Analytic Geometry: Equation of a Line

Given two points, the equation of a line whose points are equidistant from the two given points is determined.
ProblemGiven PointsEquation of the Line
1P1(3,3) P2(9,-1)3x-2y-16=0
2P1(7,6) P2(-4,7)11x-1y-10=0
3P1(-7,8) P2(-1,-3)12x-22y+103=0
4P1(8,-7) P2(-9,-6)17x-1y+2=0
5P1(-9,4) P2(-2,-4)14x-16y+77=0
6P1(9,7) P2(1,-3)4x+5y-30=0
7P1(3,-5) P2(-8,-2)11x-3y+17=0
8P1(-7,2) P2(-3,-4)2x-3y+7=0
9P1(6,9) P2(-1,1)14x+16y-115=0
10P1(4,8) P2(-5,7)9x+1y-3=0
11P1(4,-6) P2(-9,-9)13x+3y+55=0
12P1(1,9) P2(-5,-5)3x+7y-8=0
13P1(6,2) P2(7,-5)1x-7y-17=0
14P1(-7,8) P2(-6,-2)2x-20y+73=0
15P1(7,-3) P2(-8,-9)10x+4y+29=0
16P1(3,9) P2(-7,8)20x+2y+23=0
17P1(5,8) P2(-1,3)12x+10y-79=0
18P1(-2,6) P2(-3,-5)1x+11y-3=0
19P1(8,7) P2(-3,-2)11x+9y-50=0
20P1(-8,8) P2(-5,-5)3x-13y+39=0
21P1(-4,4) P2(5,-1)9x-5y+3=0
22P1(-3,7) P2(7,-1)5x-4y+2=0
23P1(5,8) P2(-9,-8)7x+8y+14=0
24P1(3,7) P2(-9,-8)8x+10y+29=0
25P1(9,7) P2(-9,-1)9x+4y-12=0
26P1(3,7) P2(8,-1)10x-16y-7=0
27P1(1,2) P2(-1,1)4x+2y-3=0
28P1(4,6) P2(-2,-1)12x+14y-47=0
29P1(4,-9) P2(-5,-9)2x-0y+1=0
30P1(-2,1) P2(-5,-8)1x+3y+14=0
31P1(9,9) P2(6,-8)3x+17y-31=0
32P1(2,9) P2(9,-2)7x-11y+0=0
33P1(9,5) P2(-5,-4)28x+18y-65=0
34P1(8,6) P2(-4,8)6x-1y-5=0
35P1(-7,4) P2(6,-6)26x-20y-7=0
36P1(8,9) P2(-9,-2)17x+11y-30=0
37P1(4,8) P2(-7,9)11x-1y+25=0
38P1(-5,8) P2(1,-7)4x-10y+13=0
39P1(-4,8) P2(8,-1)8x-6y+5=0
40P1(-6,3) P2(-7,-6)1x+9y+20=0
41P1(6,6) P2(9,-6)2x-8y-15=0
42P1(1,1) P2(6,-2)5x-3y-19=0
43P1(6,-2) P2(-2,-6)2x+1y-0=0
44P1(-4,1) P2(7,-8)11x-9y-48=0
45P1(-6,9) P2(1,-3)14x-24y+107=0
46P1(4,1) P2(-6,-5)5x+3y+11=0
47P1(3,-1) P2(-8,-5)22x+8y+79=0
48P1(-4,7) P2(1,-4)5x-11y+24=0
49P1(9,-8) P2(-9,-8)1x-0y-0=0
50P1(3,3) P2(-2,3)2x-0y-1=0