Problem | Given Points | Equations of the Line | Slopes of the Line |
---|
1 | P1(-4,5) P2(0,3); A(7,11) B(11,9) | x+2y-6=0, x+2y-29=0 | parallel lines: m1=-1/2 m2=-1/2 |
2 | P1(-3,1) P2(1,5); A(4,12) B(2,10) | x-y+4=0, x-y+8=0 | parallel lines: m1=1/1 m2=1/1 |
3 | P1(6,5) P2(4,3); A(4,4) B(2,6) | x-y-1=0, x+y-8=0 | perpendicular lines: m1=1/1 m2=1/-1 |
4 | P1(6,1) P2(8,4); A(3,3) B(6,1) | 3x-2y-16=0, 2x+3y-15=0 | perpendicular lines: m1=3/2 m2=-2/3 |
5 | P1(9,7) P2(5,0); A(0,6) B(7,2) | 7x-4y-35=0, 4x+7y-42=0 | perpendicular lines: m1=-7/-4 m2=-4/7 |
6 | P1(-3,8) P2(7,2); A(9,10) B(14,7) | 3x+5y-31=0, 3x+5y-77=0 | parallel lines: m1=-3/5 m2=-3/5 |
7 | P1(4,5) P2(8,1); A(5,1) B(9,5) | x+y-9=0, x-y-4=0 | perpendicular lines: m1=-1/1 m2=1/1 |
8 | P1(-2,0) P2(4,8); A(14,14) B(8,6) | 4x-3y+8=0, 4x-3y-14=0 | parallel lines: m1=4/3 m2=-4/-3 |
9 | P1(7,3) P2(4,5); A(7,4) B(9,7) | 2x+3y-23=0, 3x-2y-13=0 | perpendicular lines: m1=2/-3 m2=3/2 |
10 | P1(4,3) P2(5,8); A(2,1) B(7,0) | 5x-y-17=0, x+5y-7=0 | perpendicular lines: m1=5/1 m2=-1/5 |
11 | P1(-4,1) P2(0,5); A(2,3) B(5,6) | x-y+5=0, x-y+1=0 | parallel lines: m1=1/1 m2=1/1 |
12 | P1(-1,0) P2(9,3); A(14,3) B(4,0) | 3x-10y+3=0, 3x-10y-12=0 | parallel lines: m1=3/10 m2=-3/-10 |
13 | P1(-2,9) P2(6,7); A(12,3) B(8,4) | x+4y-34=0, x+4y-24=0 | parallel lines: m1=-1/4 m2=1/-4 |
14 | P1(7,7) P2(6,9); A(7,7) B(9,8) | 2x+y-21=0, x-2y+7=0 | perpendicular lines: m1=2/-1 m2=1/2 |
15 | P1(-1,4) P2(8,9); A(2,8) B(11,13) | 5x-9y+41=0, 5x-9y+62=0 | parallel lines: m1=5/9 m2=5/9 |
16 | P1(7,8) P2(3,4); A(8,1) B(4,5) | x-y+1=0, x+y-9=0 | perpendicular lines: m1=1/1 m2=1/-1 |
17 | P1(-6,9) P2(3,6); A(6,8) B(0,10) | x+3y-21=0, x+3y-30=0 | parallel lines: m1=-1/3 m2=1/-3 |
18 | P1(-8,2) P2(4,5); A(8,1) B(4,0) | x-4y+16=0, x-4y-4=0 | parallel lines: m1=1/4 m2=-1/-4 |
19 | P1(3,9) P2(7,7); A(3,0) B(5,4) | x+2y-21=0, 2x-y-6=0 | perpendicular lines: m1=-1/2 m2=2/1 |
20 | P1(6,7) P2(0,0); A(7,0) B(0,6) | 7x-6y+0=0, 6x+7y-42=0 | perpendicular lines: m1=-7/-6 m2=6/-7 |